Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model
نویسندگان
چکیده
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملpositivity-preserving nonstandard finite difference schemes for simulation of advection-diffusion reaction equations
systems in which reaction terms are coupled to diffusion and advection transports arise in awide range of chemical engineering applications, physics, biology and environmental. in these cases, thecomponents of the unknown can denote concentrations or population sizes which represent quantities andthey need to remain positive. classical finite difference schemes may produce numerical drawbacks s...
متن کاملPositivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences
We design nonstandard finite difference (NSFD) schemes which are unconditionally dynamically consistent with respect to the positivity property of solutions of cross-diffusion equations in biosciences. This settles a problem that was open for quite some time. The study is done in the setting of three concrete and highly relevant cross-diffusion systems regarding tumor growth, convective predato...
متن کاملPositivity Preserving Nonstandard Finite Difference Schemes Applied to Cancer Growth Model
When one solves differential equations, modeling biological or physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. In this work, we introduce explicit finite difference schemes based on the nonstandard discretization method to a...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2019
ISSN: 2391-5455
DOI: 10.1515/math-2019-0027